全文预览

高考数学概念方法易错点题型总结大全

上传者:随心@流浪 |  格式:doc  |  页数:66 |  大小:8565KB

文档介绍
.函数的奇偶性。Р1.具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称。如Р若函数,为奇函数,其中,则的值是Р(答:0);Р2.确定函数奇偶性的常用方法(若所给函数的解析式较为复杂,应先化简,再判断其奇偶性):Р①定义法:如判断函数的奇偶性____(答:奇函数)。Р②利用函数奇偶性定义的等价形式:或()。如Р判断的奇偶性___.(答:偶函数)Р③图像法:奇函数的图象关于原点对称;偶函数的图象关于轴对称。Р3.函数奇偶性的性质:Р①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.Р②如果奇函数有反函数,那么其反函数一定还是奇函数.Р③若为偶函数,则.如Р若定义在R上的偶函数在上是减函数,且=2,则不等式的解集为______.Р(答:)Р④若奇函数定义域中含有0,则必有.故是为奇函数的既不充分也不必要条件。如Р若为奇函数,则实数=____(答:1).Р⑤定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”。如Р设是定义域为R的任一函数, ,。①判断与的奇偶性; ②若将函数,表示成一个奇函数和一个偶函数之和,则=____Р(答:①为偶函数,为奇函数;②=)Р⑥复合函数的奇偶性特点是:“内偶则偶,内奇同外”.Р⑦既奇又偶函数有无穷多个(,定义域是关于原点对称的任意一个数集).Р十.函数的单调性。Р1.确定函数的单调性或单调区间的常用方法:Р①在解答题中常用:定义法(取值――作差――变形――定号)、导数法(在区间内,若总有,则为增函数;反之,若在区间内为增函数,则,请注意两者的区别所在。如Р已知函数在区间上是增函数,则的取值范围是____Р(答:));Р②在选择填空题中还可用数形结合法、特殊值法等等,特别要注意

收藏

分享

举报
下载此文档