xye1??确定,求 0d d ?xx y . 17. 解:方程两边对 x 求导,得 yxy yy????ee y yx ye1 e???当0?x 时,1?y 所以, 0d d ?xx yee01 e 1 1???? 18. 由方程xyx y???e) cos( 确定y 是x 的隐函数,求 yd . 18.解在方程等号两边对 x 求导,得)()e(]) [cos( ??????xyx y1e]1 )[ sin( ???????yyyx y 10 ) sin( 1 )] sin( e[yxyyx y??????) sin( e ) sin( 1yx yxy y??????故xyx yxy yd) sin( e ) sin( 1d????? 19. 已知y xxx2 cos ??,求)(xy ?. 解:xxxy2 sin )2 (ln 22 3 2 1??? 20. 已知)(xfx x sin 2?,求)(xf ?解:)(xf ?x xx xx2 1 cos 2 sin 2 ln2??. 21. 已知x xexy?? 2 cos ,求)(xy ?; 解:)()2( sin 2xx xeexxy????? 22. 已知23 sin xexy ???,求 dy. 解:)4() (cos sin 3 22xexxy x????? dy=dx xexx x)4) (cos sin 3( 22?? 23.设yxx x ln 2???,求 dy. 解:x xx y 12 1 2 3?????dxx xx dy) 12 1( 2 3???? 24.设e2 sin xxy ???,求yd . 解:e22 cos 2 xxxy ????xxxy xd)e22 cos 2(d ???四、应用题 1. 设生产某种产品 x 个单位时的成本函数为: xxxC625 .0100 )( 2???(万元) ,