挠度和转角这两个位移不但与梁的弯曲变形程度(挠曲线曲率的大小)有关,也与支座约束的条件有关。图a和图b所示两根梁,如果它们的材料和尺寸相同,所受的外力偶之矩Me也相等,显然它们的变形程度(也就是挠曲线的曲率大小)相同,但两根梁相应截面的挠度和转角则明显不同。第五章梁弯曲时的位移(a)(b)4在图示坐标系中,挠度w向下为正,向上为负;顺时针转向的转角为正,逆时针转向的转角为负。第五章梁弯曲时的位移5§5-2梁的挠曲线近似微分方程及其积分Ⅰ.挠曲线近似微分方程的导出在§4-4中曾得到等直梁在线弹性范围内纯弯曲情况下中性层的曲率为这也就是位于中性层内的挠曲线的曲率的表达式。第五章梁弯曲时的位移6在横力弯曲下,梁的横截面上除弯矩M=M(x)外,还有剪力FS=FS(x),剪力产生的剪切变形对梁的变形也会产生影响。但工程上常用的梁其跨长l往往大于横截面高度h的10倍,此时剪力FS对梁的变形的影响可略去不计,而有注意:对于有些l/h>10的梁,例如工字形截面等直梁,如同在核电站中会遇到的那样,梁的翼缘由不锈钢制作,而主要承受剪力的腹板则由价廉但切变模量较小的复合材料制作,此时剪切变形对梁的变形的影响是不可忽略的。第五章梁弯曲时的位移7从几何方面来看,平面曲线的曲率可写作式中,等号右边有正负号是因为曲率1/r为度量平面曲线(挠曲线)弯曲变形程度的非负值的量,而w"是q=w'沿x方向的变化率,是有正负的。第五章梁弯曲时的位移8第五章梁弯曲时的位移再注意到在图示坐标系中,负弯矩对应于正值w",正弯矩对应于负值的w",故从上列两式应有由于梁的挠曲线为一平坦的曲线,上式中的w2与1相比可略去,于是得挠曲线近似微分方程9Ⅱ.挠曲线近似微分方程的积分及边界条件求等直梁的挠曲线方程时可将上式改写为后进行积分,再利用边界条件(boundarycondition)确定积分常数。第五章梁弯曲时的位移10