全文预览

初级中学一年级数学_01_有理数的巧算

上传者:叶子黄了 |  格式:ppt  |  页数:22 |  大小:0KB

文档介绍
“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解S=(1-2)+(3-4)+…+(-1)n+1·n. 下面需对n的奇偶性进行讨论: 当n为偶数时,上式是n/2个(-1)的和,所以有s=-n/2 当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1. 现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然:n-(n+1)-(n+2)+(n+3)=0. 这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1. 所以,所求最小非负数是1. 说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-2×2=100×100+(-2×100+2×100)-2×2=1002-22 这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.

收藏

分享

举报
下载此文档