实际应用中常常关心的是熵之间的差值,无穷项可相互抵消,故这样定义连续信源的熵不会影响讨论所关心的交互信息量、信息容量和率失真函数。?需要强调的是连续信源熵的值只是熵的相对值,不是绝对值,而离散信源熵的值是绝对值。( ) ( ) log ( ) H X p x p x dx ?????? Evaluation only. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. Copyright 2004-2011 Aspose Pty Ltd. 10 HUST --- Information and Coding Theory 第第2 2章章信源熵信源熵? 2.0 信源的数学模型及其分类? 2.1 单符号离散信源? 2.2 多符号离散平稳信源?2.3 连续信源?2.3.1 连续信源的熵?2.3.2 几种特殊连续信源的熵?2.3.3 最大连续熵定理?2.3.4 联合熵、条件熵和平均交互信息量 Evaluation only. Evaluation only. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Created with Aspose.Slides for .NET 3.5 Client Profile 5.2.0.0. Copyright 2004-2011 Aspose Pty Ltd. Copyright 2004-2011 Aspose Pty Ltd.