全文预览

数学:2.9《有理数的乘法运算律》课件(华东师大版七年级上)

上传者:upcfxx |  格式:ppt  |  页数:25 |  大小:0KB

文档介绍
叙述有理数乘法法则。想一想想一想在小学我们知道,数的乘法满足交换律,例如 3× 5=5 ×3 还满足结合律,例如(3×5)× 2=3 ×(5×2) 引进了负数以后,这些运算律是否还成立呢? 也就是说,上面两个等式中,将 3、5和2换成任意的有理数,是否仍然成立? 任意选择两个有理数(至少有一个负数) 分别填入下列的 和 内,并比较两个运算结果: ×× 和 (6)16 ×(-5); (1)(-6) ×5;(2)5 ×(-6) (3)(-36) ×(-1); (4)(-1) ×(-36); (5)(-5) ×16; (7)100 ×(-0.001); (8) (-0.001 )×100 ; -30 36 36 -80 -0.1 -0.1 -80 -30 做一做,想一想做一做,想一想通过计算发现了什么呢? 通过计算发现了什么呢? 两个数相乘,交换因数的位置,积不变乘法交换律: ab=ba 把规律总结一下把规律总结一下乘法的交换律乘法的交换律任意选择三个有理数(至少有一个负数) 分别填入下列的 、 和 内,并比较三个运算结果: ( × ) ××(× ) 和(1) [3×(― 4)]×(― 5); (2) 3 ×[(― 4)×(― 5)]; = =( ( -12 -12 ) )×( -5) = 60 =3 =3 × 20 =60 做一做,想一想做一做,想一想三个有理数相乘,先把前两个数相乘, 或者先把后两个数相乘,积不变。乘法结合律:( ab)c=a(bc) 把规律总结一下把规律总结一下乘法的结合律乘法的结合律根据乘法交换律和结合律可以推出: 三个以上有理数相乘,可以任意交换因数的位置,也可先把其中的几个数相乘计算( 计算( -2 -2) )× × 5 5 × ×( ( -3 -3) ) 有多少种算法? 有多少种算法? 你认为哪种算法比较好? 你认为哪种算法比较好?

收藏

分享

举报
下载此文档