离数据重建Р系统发生树的方法之一。NJ 法的运算速度最快,但该算法每迭代运算一次均只搜索最近Р邻居配对,对其他可能的配对不加考虑,最终只生成单一的最优树,可能会遗漏一些拓扑Р结构更合理的次优树为弥补缺陷。Р 简约法是一种不依赖任何进化模型的无噪声统计方法,能快速地分析出大量序列之Р间的系统发生关系,所构建的树中的短分支更接近真实。但简约树的分值完全决定于所有Р重建祖先序列中的最小突变数,而突变是否按照事先约定的核苷酸最少替代的途径进行是Р不得而知的,单一的突变图谱可能会得出是似而非的结论。再者,所有分支的突变数不Р可能相同。由于没有考虑核苷酸的突变过程,使得长分支末端的序列由于趋同进化而显示Р较好的相似性趋同现象违背了简约法则,导致的结果是对“长枝吸引”的敏感。因此,Р当序列单位位点上核苷酸替代数相对较大时.MP 法则极可能得出错误拓扑结构的树。Р 最大似然法似乎是几种常用方法中最为近似的方法,它考虑了所有可能的突变路径,Р能完全利用数据的系统发生信息。然而,最大似然法构建的系统树在很大程度上依赖于对Р核苷酸替代模型的选择,不同的位点核苷酸替代速率不一致,在核苷酸替代一般模型中包Р含了反映进化过程的参数,如颠换和置换的偏倚以及替代率变异的分布模型,但并非替代Р模型越复杂,结果就越理想。似然法运算强度极大,对于分类群较多时十分费时,这也是Р似然法应用的最大障碍,而且似然法并没有评估拓扑结构的优劣,而是假定分支长度估计Р最精确的拓扑结构为最优树,实际上,系统发生所关心的是树的拓扑结构,分支长度反而Р成为干扰参数,忽略分支长度似乎更合理些。Р 当序列间的分歧度不高且序列较多时,距离法、简约法、似然法所构建的系统树往往Р具有相似的拓扑结构。然而,一般应用这些方法所构建的进化树常有拓扑差异。虽然利用Р自展法可以大致判断分支是否合理,但自展值低的分支不一定就该舍弃。因此有必要比较Р 4