阵РX=mvnrnd(mu,sigma,n);m=0; %定义X为该二元正态分布Рfor i=1:nР if (X(i,1)^2+X(i,2)^2<=10000) %落在圆内Р m=m+1; %统计个数Р endРendРp=m/nР第二题————绘图Рn1=5;n2=10000;Рmu=2000;sigma=50;A=0.5;K=50000;b=0.5;c=0.35;Рn=5000;tol=10^-3;Рn=0:1:10000;Рz=normcdf(n,mu,sigma)-(b-A*(1-2*n/K))/(b-c);Рplot(n,z);Р第二题————二分法求解Рn1=1000;n2=3000; %二分区间Рmu=2000;sigma=50;A=0.5;K=50000;b=0.5;c=0.35;Рn=2000;tol=10^-5;Рz=normcdf(n,mu,sigma)-(b-A*(1-2*n/K))/(b-c);Рz1=normcdf(n1,mu,sigma)-(b-A*(1-2*n1/K))/(b-c);Рz2=normcdf(n2,mu,sigma)-(b-A*(1-2*n2/K))/(b-c);Рwhile (abs(z)>=tol) %差值大于误差限时停止二分Р if (z*z1)<0Р n2=n;Р n=(n1+n2)/2;Р elseif (z*z1)>0Р n1=n;Р n=(n1+n2)/2;Р else %二分到零点时也停止循环Р breakР endР z=normcdf(n,mu,sigma)-(b-A*(1-2*n/K))/(b-c);Р z1=normcdf(n1,mu,sigma)-(b-A*(1-2*n1/K))/(b-c);Р z2=normcdf(n2,mu,sigma)-(b-A*(1-2*n2/K))/(b-c);РendРn