全文预览

现代信号处理作业及答案

上传者:火锅鸡 |  格式:docx  |  页数:27 |  大小:386KB

文档介绍
通滤波器指标:Рnormwc,normwr,αp,αs Р(4)设计模拟低通原型滤波器。查表得到归一化低通传输函数G(p):РGP=1P2+2P+1Р用模拟低通滤波器设计方法(由巴特沃斯设计步骤或切比雪夫设计步骤)得到模拟低通滤波器的传输函数Ha(s)Р(5)模拟低通滤波器转化为模拟带通滤波器。Р(6)利用双线性变换法将模拟带通滤波器Ha(s)转换成数字带通滤波器H(z)Р由得到 Hz=Has|s=1-Z-11+Z-1Р也可以用脉冲响应不变法: Р两种方法比较比较:Р脉冲响应不变法数字滤波器单位脉冲响应的数字表示近似原型的模拟滤波器单位脉冲响应,因此时域特性逼近好。但会产生频谱混叠现象,只适合带限滤波器Р双线性变换法可以克服多值映射得关系,可以消除频率的混叠但时域到频域的变换是非线性的,在高频处有较大的失真。Р5.数字带阻滤波器的设计:Р步骤:Р确定性能指标:Р通带截止频率wc1,wc2、阻带截止频率wr1,wr2、阻带最小衰减αs通带最大衰减αp Р(2) 对带通数字滤波器H(z)的数字边界频率预畸变РΩ=2T*tanw2Р主要是通带截止频率ωp1,ωp2;阻带截止频率ωs1,ωs2的转换。Р对双线性变换法一般T=2s Р通带截止频率wc1=(2/T)*tan(wp1/2) 、wc2=(2/T)*tan(wp2/2) Р阻带截止频率wr1=(2/T)*tan(ws1/2)、wr2=(2/T)*tan(ws2/2) Р阻带最小衰减αs 通带最大衰减αp Р(由模拟低通滤波器设计方法可得)Р模拟低通滤波器确定模拟带阻滤波器Р由模拟低通到模拟带阻的变换这一模拟低通到带阻的变换关系为Рs=Ω02PP2+Ω02Р式中s为模拟低通原型拉普拉斯变量(s=σ+jΩ),𝑝为模拟带阻的拉普拉斯变量(𝑝=σ+jΩ),Ω0是模拟带阻滤波器的几何中心频率。令𝑝=jΩ可得РS=jΩ02ΩΩ02-Ω2

收藏

分享

举报
下载此文档