全文预览

山东省青岛市九年级下学期数学期末考试试卷

上传者:似水流年 |  格式:doc  |  页数:13 |  大小:645KB

文档介绍
∠CAB.РР(1) 求证:直线BF是⊙O的切线; Р(2) 若AB=5,sin∠CBF= ,求BC和BF的长. Р23. (5分) (2020九上·沈河期末) 如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C,顶点是D,对称轴交x轴于点E. РРР(1) 求抛物线的解析式; Р(2) 点P是抛物线在第四象限内的一点,过点P作PQ∥y轴,交直线AC于点Q,设点P的横坐标是m. Р①求线段PQ的长度n关于m的函数关系式;Р②连接AP,CP,求当△ACP面积为 时点P的坐标;Р(3) 若点N是抛物线对称轴上一点,则抛物线上是否存在点M,使得以点B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出线段BN的长度;若不存在,请说明理由. Р24. (15分) (2019九上·苏州开学考) 正方形 中, 是 中点,点 从点 出发沿 的路线匀速运动,到点 停止,点 从点 出发,沿 路线匀速运动, 、 两点同时出发,点 的速度是点 速度的 倍 ,当点 停止时,点 也同时停止运动,设 秒时,正方形 与 重叠部分的面积为 , 关于 的函数关系如图2所示,则 РР(1) 求正方形边长 ; Р(2) 求 的值; Р(3) 求图2中线段 所在直线的解析式. РРР参考答案Р一、 单选题 (共10题;共20分)Р1-1、Р2-1、Р3-1、Р4-1、Р5-1、Р6-1、Р7-1、Р8-1、Р9-1、Р10-1、Р二、 填空题 (共8题;共8分)Р11-1、Р11-2、Р12-1、Р13-1、Р14-1、Р15-1、Р16-1、Р17-1、Р18-1、Р三、 解答题 (共6题;共50分)РР19-1、Р19-2、Р20-1、Р20-2、Р20-3、Р21-1、РРР22-1、

收藏

分享

举报
下载此文档