ks.test(b,"pnorm",mean(b),sd(b))One-sampleKolmogorov-Sm" /> ks.test(b,"pnorm",mean(b),sd(b))One-sampleKolmogorov-Sm" />

全文预览

统计建模与R软件实验报告

上传者:upcfxx |  格式:doc  |  页数:21 |  大小:321KB

文档介绍
9,160,162)###正态性检验:>ks.test(a,"pnorm",mean(a),sd(a))One-sampleKolmogorov-Smirnovtestdata:aD=0.1464,p-value=0.9266alternativehypothesis:two-sided>ks.test(b,"pnorm",mean(b),sd(b))One-sampleKolmogorov-Smirnovtestdata:bD=0.2222,p-value=0.707alternativehypothesis:two-sided####方差齐性检验:>var.test(a,b)paretwovariancesdata:aandbF=1.9646,numdf=11,denomdf=9,p-value=0.32alternativehypothesis:trueratioofvariancesisnotequalto195percentconfidenceinterval:0.50219437.0488630sampleestimates:ratioofvariances1.964622####可认为a和b的方差相同。####选用方差相同模型t检验:>t.test(a,b,var.equal=TRUE)TwoSamplet-testdata:aandbt=-8.8148,df=20,p-value=2.524e-08alternativehypothesis:truedifferenceinmeansisnotequalto095percentconfidenceinterval:-48.24975-29.78358sampleestimates:meanofxmeanofy125.5833164.6000p-value=2.524e-08<0.05,因而认为两者有显著差别。

收藏

分享

举报
下载此文档