角的变换、角与其倍角的变换、两角与其和差角的变换.变换化简技巧:角的拆变,公式变用,切割化弦,倍角降次,“1”的变幻,设元转化,引入辅角,平方消元等.具体地:(1)角的“配”与“凑”:掌握角的“和”、“差”、“倍”和“半”公式后,还应注意一些配凑变形技巧,如下:,;,;;;,;;等.(2)“降幂”与“升幂”(次的变化)利用二倍角公式和二倍角公式的等价变形,,可以进行“升”与“降”的变换,即“二次”与“一次”的互化.(3)切割化弦(名的变化)利用同角三角函数的基本关系,将不同名的三角函数化成同名的三角函数,以便于解题.经常用的手段是“切化弦”和“弦化切”.(4)常值变换常值可作特殊角的三角函数值来代换.此外,对常值“1”可作如下代换:等.(5)引入辅助角一般的,,期中.特别的,;,等.(6)特殊结构的构造构造对偶式,可以回避复杂三角代换,化繁为简.举例:,可以通过两式和,作进一步化简.(7)整体代换举例:,,可求出整体值,作为代换之用.B3.三角形中的三角变换三角形中的三角变换,除了应用公式和变换方法外,还要注意三角形自身的特点.(1)角的变换因为在中,(三内角和定理),所以任意两角和:与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形:①三内角都是锐角;②三内角的余弦值为正值;③任两角和都是钝角;④任意两边的平方和大于第三边的平方.即,;;.;;.(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理.面积公式:.其中为三角形内切圆半径,为周长之半.(3)对任意,;在非直角中,.(4)在中,熟记并会证明:*1.成等差数列的充分必要条件是.*2.是正三角形的充分必要条件是成等差数列且成等比数列.*3.三边成等差数列;.*4.三边成等比数列,.(5)锐角中,,;.【思考】:钝角中的类比结论(6)两内角与其正弦值:在中,,…(7)若,则.B4.三角恒等与不等式组一