全文预览

2008年北京市高考理科数学试题及答案

上传者:qnrdwb |  格式:doc  |  页数:9 |  大小:931KB

文档介绍
,.,.ACBEP,平面.平面,.(Ⅱ),,.又,.又,即,且,平面.取中点.连结.,.是在平面内的射影,.是二面角的平面角.在中,,,,.ACBDPH二面角的大小为.(Ⅲ)由(Ⅰ)知平面,平面平面.过作,垂足为.平面平面,平面.的长即为点到平面的距离.由(Ⅰ)知,又,且,平面.平面,.在中,,,..点到平面的距离为.17.(共13分)解:(Ⅰ)记甲、乙两人同时参加岗位服务为事件,那么,即甲、乙两人同时参加岗位服务的概率是.(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件,那么,所以,甲、乙两人不在同一岗位服务的概率是.(Ⅲ)随机变量可能取的值为1,2.事件“”是指有两人同时参加岗位服务,则.所以,的分布列是1318.(共13分)解:.令,得.当,即时,的变化情况如下表:0当,即时,的变化情况如下表:0所以,当时,函数在上单调递减,在上单调递增,在上单调递减.当时,函数在上单调递减,在上单调递增,在上单调递减.当,即时,,所以函数在上单调递减,在上单调递减.19.(共14分)解:(Ⅰ)由题意得直线的方程为.因为四边形为菱形,所以.于是可设直线的方程为.由得.因为在椭圆上,所以,解得.设两点坐标分别为,则,,,.所以.所以的中点坐标为.由四边形为菱形可知,点在直线上,所以,解得.所以直线的方程为,即.(Ⅱ)因为四边形为菱形,且,所以.所以菱形的面积.由(Ⅰ)可得,所以.所以当时,菱形的面积取得最大值.20.(共13分)(Ⅰ)解:,,;,.(Ⅱ)证明:设每项均是正整数的有穷数列为,则为,,,,,从而.又,所以,故.(Ⅲ)证明:设是每项均为非负整数的数列.当存在,使得时,交换数列的第项与第项得到数列,则.当存在,使得时,若记数列为,则.所以.从而对于任意给定的数列,由可知.又由(Ⅱ)可知,所以.即对于,要么有,要么有.因为是大于2的整数,所以经过有限步后,必有.即存在正整数,当时,.

收藏

分享

举报
下载此文档