×20=30(万元);方案2:1.1×(20+5)+5×0.3=29(万元);方案3:1.5×4+1.1×20=28(万元).∵3027.5>30>28,∴第三种施工方案最节省工程款.【点评】本题考查了列分式方程解实际问题的运用,列一元一次方程解实际问题的运用,有理数大小比较的运用,解答时求出工程的施工规定天数是关键. 10.(2016春•长沙校级期中)一工地计划租用甲、乙两辆车清理淤泥,需在规定日期内完成.从运输量来估算:如果单独租用甲车,恰好按期完成,若单独租用乙车完成任务则比单独租用甲车完成任务多用15天,结果同时租用甲、乙两辆车合作运了7天,余下部分由乙车完成,则超过了规定日期1天完成任务.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问:租甲乙两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少且不耽误工期?请说明理由.【分析】(1)设甲车单独完成任务需要x天,乙单独完成需要x+15天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.【解答】解:(1)设甲车单独完成任务需要x天,乙单独完成需要x+15天,可得:,解得:x=15,经检验x=15是原方程的解,答:甲15天,乙30天;(2)设甲车每天租金为a元,乙车每天租金为b元,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:,解得:,①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.【点评】此题考查了分式方程的应用,及二元一次方程组的知识,分别得出甲、乙单独需要的天数,及甲、乙车的租金是解答本题的关键.