,维纳奠定了关于最佳滤波器研究的基础。假定线性滤波器的输入为有用信号和噪声信号之和,两者均为广义平稳过程且已知它们的二阶统计特性,根据最小均方误差准则,得了最佳线性滤波器的参数波器获得了极其广泛的应用。这种滤波器被称为维纳滤波器。维纳滤波器在维纳研究的基础上,人们还研究了根据最大输出信噪比准则、统计检测准则以及其他最佳准则求得的最佳线性滤波器。但人们发现,在一定条件下,这些最佳滤波器与维纳滤波器是等价的。因而,讨论最优线性滤波器时,一般均以维纳滤波器作为参考。要实现维纳滤波,就要求:(l)输入信号是广义平稳的;〔2)输入信号的统计特征是已知的。根据其他最佳准则的滤波器亦有同样要求。然而,由于输入过程取决于外界的信号、干扰环境,这种统计特性常常是未知的、变化的,因而不能满足上述两个要求。在这种情况下,促使人们研究自适应滤波器。滤波器研究的一个基本问题是:如何建立最佳或最优的滤波器。根据最小均方误差准则,20世纪40年代维纳求得了最佳线性滤波器的参数,这种滤波器称为维纳滤波器。然而,只有对信号和噪声的统计特性先验已知的情况下,维纳滤波器才能获得最优滤波。遗憾的是在实际应用中,常常无法得到这些统计特性的先验知识;或者,统计特性是随时间变化的。因此用维纳滤波器实现不了最优滤波。在这种情况下,自适应滤波能够提供卓越的滤波性能。所谓自适应滤波器,就是利用前一时刻己获得的滤波器参数的结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波器具有“自我调节”和“跟踪”能力。自适应滤波器可以分为线性自适应滤波器和非线性自适应滤波器。非线性自适应滤波器包括Vofterra滤波器和基于神经网络的自适应滤波器。非线性自适应滤波器具有更强的信号处理能力。但是,由于非线性自适应滤波器的计算较复杂,实际用得最多的仍然是线性自适应滤波器如图3.1所示。