生液化和溃坝。土体的最低强度要求消除土体中潜在的液化影响,并且建议通过现场压实来提高堤坝土体的强度。抗震评价在分析中考虑了两种失败模式,即大坝失稳和大坝过度变形,紧接着又进行了如下分析:(1)震后瞬时的孔隙水压力测定;(2)震后松散地基表面评估;(3)震后对大坝填土中的疏松砂岩层的液化程度分析;(4)震后砂岩层液化产生的影响。液化影响评价根据修正的后的标准贯入试验值的平均值和循环应力比,在总共沉降的4.6m(15英尺)松散图层中,由于液化产生的沉降为0.23m(0.75英尺)。永久变形分析基于Makdisi和Seed(1977)的程序,永久变形可以使用屈服加速度计算,还可以用平均感应加速度的吋间历程来计算。由于针对流量损失的安全系数随地震影响而变化,且联邦能源管制委员会在这方面的规定较缺乏,因此纽马克型变形分析并不是必要的。因此,可以得出结论:在地震发生后由于液化引起的沉降超过0.23m(0.75英尺),将引起边坡的失稳,最终将导致堤坝发生显著的永久变形。堤防整治基于上述分析结果,建议通过现场压实的方法加固大坝。通过分析,已经测定了能消除砂砾液化可能性的最小砂砾表面张力。这项分析如下所述分为三部分。第一,进行对大坝下游左侧斜坡的稳定性测试。使用不同的强度和几何参数以确定最小剪力强度和最小的土壤加强带。第二,对标准贯入试验进行了修正。最小的残余剪切强度对应于一个规范化的贯入阻力值(N1)。根据这个值,进行反算来确定最小惯入标准值。第三,基于最小土壤加强带和最大土壤加强带的数值重新评估沙砾的液化潜能,以显示假设大坝加固到最低值,那时在坝体左侧下游坡面的潜在液化危险是杏被消除。结论大坝评估和修复的关键在于大坝设计,建造,维护和监测记录的完整性和评估者自身的工程建设经验,教育背景和工作能力。本文通过展示一个完整的工程项0来举例说明大坝的修复评估工作很大程度上取决于工程师的专业能力。