全文预览

空间滤波技术的原理和应用

上传者:蓝天 |  格式:doc  |  页数:35 |  大小:866KB

文档介绍
细(例如很密的光栅),或物镜孔径非常小时,有可能只有0级衍射(空间频率为0)能通过,则在像平面上虽有光照,但完全不能形成图像。Р波特在1906年把一个细网格作物(相当于正交光栅),并在透镜的焦平面上设置一些孔式屏对焦平面上的衍射亮点(即夫琅和费衍射花样)进行阻挡或允许通过时,得到了许多不同的图像.设焦平面上坐标为ξ,那么ξ与空间频率相应关系为:Р (1.3)Р(这适用于角度较小时sinθ≈tgθ=ξ/f,f为焦距).焦平面中央亮点对应的是物平面上总的亮度(称为直流分量),焦平面上离中央亮点较近(远)的光强反映物平面上频率较低(高)的光栅调制度(或可见度).1934年译尼克在焦平面中央设置一块面积很小的相移板,使直流分量产生位相变化,从而使生物标本中的透明物质不须染色变成明暗图像,因而可研究活的细胞,这种显微镜称为相衬显微镜。为此他在1993年获得诺贝尔奖。在20世纪50年代,通信理论中常用的傅里叶变换被引入光学,60年代激光出现后又提供了相干光源,一种新观点(傅里叶光学)与新技术(光学信息处理)就此发展起来。Р上面我们看到在显微镜中物镜的有限孔径实际上起了一个高频滤波的作用。它挡住了高频信息,而只使低频信息通过。这就启示我们:如果在焦平面上人为地插上一些滤波器(吸收板或移相板)以改变焦平面上的光振幅和相位,就可以根据需要改变频谱以至像的结构,这就叫做空间滤波。最简单的滤波器就是把一些特种形状的光阑插到焦平面上,使一个或几个频率分量能通过,而挡住其他的频率分量,从而使像平面上的图像只包括一种或几种频率分量。对这些现象的观察能使我们对空间傅里叶变换和空间滤波有更明晰的概念。Р1.2 空间滤波技术的发展状况Р60年代激光出现后,光学作为信息处理的手段得到很大发展。其主要特点是具有高速有效的二维并行处理的能力。光信息处理采用的技术主要有:傅里叶变换、空间滤波、相关性处理、全息术等。

收藏

分享

举报
下载此文档