IC] = J[C]*alpha: #惯性力向质心简化的主矩Р>eq3 := subs(J[C] = (1/12)*m*l^2, eq3): #代换Р>eq4 := -M[IC]-(1/2)*F[IRx]*l*cos(phi(t))+(1/2)*(g*m+F[IRy])*l*sin(phi(t)) = 0:Р #Р>eq4 := subs(F[IRx] = m*a[Cx], F[IRy] = m*a[Cy], M[IC] = J[C]*alpha, J[C] = (1/12)*m*l^2, eq4): #代换Р>SOL1 := solve({eq4}, {alpha}): #解方程Р>SOL1 := simplify(SOL1): #化简Р>alpha := subs(SOL1, alpha): #代换Р>normal(eq1); normal(eq2): #惯性力方程Р>eq5 := F[A]-F[IRx] = 0: #Р>eq6 := -g*m+F[B]-F[IRy] = 0: #Р>F[A] := solve(subs(normal(eq1), eq5), F[A]):#解方程求Р>F[B] := solve(subs(normal(eq2), eq6), F[B]):#解方程求Р>g := 9.8: m := 1: phi := subs(phi[t] = phi, phi[t]):#初始条件Р>plot(F[A], phi = 0 .. (1/2)*Pi): #当从变化,变化曲线Р>plot(F[B], phi = 0 .. (1/2)*Pi, color = black):Р #当从变化,变化曲线Р>alpha := subs(l = 2, alpha): #代换Р>plot(alpha, phi = 0 .. (1/2)*Pi, color = green):