3 4 1 1 2 1 2 3 4 32 k x x k x x x x x x = - = + + , 所以结论成立. (2) 设点( , 0) Q q ,点( , 0) R r ,由E 、Q 、H 三点共线得 1 4 1 1 2 4 x q x q k x k x - - = , 解得 1 2 1 4 1 1 2 4 ( ) k k x x q k x k x -=- 由F 、R 、G 三点共线同理可得 1 2 2 3 1 2 2 3 ( ) k k x x r k x k x -=- 由 2 3 4 1 1 2 1 2 3 4 k x x k x x x x x x = + + 1 1 2 3 1 1 2 4 2 1 3 4 2 2 3 4 2 3 1 2 2 4 1 4 1 2 2 3 ( ) ( ) k x x x k x x x k x x x k x x x x x k x k x x x k x k x ? ???? ????? 2 3 1 4 1 2 2 3 1 1 2 4 x x x x k x k x k x k x -= - - 即 1 2 2 3 1 2 1 4 1 2 2 3 1 1 2 4 ( ) ( ) 0 k k x x k k x x k x k x k x k x -- + = - - ,0 r q r q ??????| | | | OQ OR =