全文预览

大数据用于企业运营

上传者:非学无以广才 |  格式:ppt  |  页数:26 |  大小:1274KB

文档介绍
库里面的数据具体的含义是什么,以及如何高效的存储和计算。通过数据接入系统和元数据管理系统,我们可以有效的管理数据的定义和相关计算逻辑;通过分布式文件系统、分布式数据库等方法解决高效存储的问题;通过大数据查询分析计算、批处理计算、流式计算和内存计算等计算模式以及大数据计算任务调度系统等方法解决高效计算的问题。业务运营监控层业务运营监控层主要目的是帮助企业监控业务运营情况的健康度,快速发现问题并定位问题原因。我们首先要做的是搭建业务运营的关键数据体系,在此基础上开发可视化的数据产品,监控关键数据的异动,并可以定位数据异动的原因,辅助运营决策。在业务运营监控层,如果企业构建了实时计算的能力,那么很多业务运营中问题就能更快的发现。因此,业务运营监控层的工作有两大关键:业务运营监控层2大关键(1)梳理数据体系。数据分析师和业务负责人一起梳理业务的数据体系,尤其是对关键数据如KPI数据进行系统化的拆解和梳理。KPI数据的梳理可以以假设该数据下跌开始进行梳理。以活跃用户为例,假设某产品的活跃用户数下跌,一方面可以通过物理拆解的方式层层下钻找出影响模块,即某产品的活跃用户下跌可能是因为该产品的子模块活跃用户下跌引起,我们可以对该子模块进一步拆解分析原因,拆解的过程也是数据体系搭建的过程;另一方面,可以对活跃用户的相关因素进行数据化梳理,如新老用户的构成、用户质量、推广渠道质量的变化等多种维度进行数据化梳理;业务运营监控层2大关键(2)打造数据异动监控产品。企业需要构建灵活和智能的数据异动监控产品,并把梳理好的数据体系封装在数据异动监控产品中。数据异动监控产品需要有三方面的能力:一方面,数据可视化程度高易读性好,通过该产品可以清晰的看到数据体系和数据间的脉络;第二方面,通过算法实现异动原因的定位;第三方面,智能的告警功能,一旦关键数据的关键节点出问题,并可以通过短信、邮件等方式周知相关人员。

收藏

分享

举报
下载此文档