置和速度确定之后的运动质点系力学(应用于多个质点的体系)质点系,多个质点体系的守恒量非惯性参考系,平动和转动(牛顿力学不适用的参考系中的处理)刚体的平面运动(刚体是特殊的质点组)角速度,角动量,转动动能一些简单应用(如有心力场,碰撞,振动等)质点运动学质点的模型,质点运动的描述:已知位置随时间变化,求速度、加速度随时间的变化轨迹(消去时间t,得空间曲线)坐标系:直角坐标系(x,y,z)柱坐标系(r,j,z)(极坐标系)(r,q)球坐标系(r,q,j)其他正交曲线坐标系自然坐标系力学基础内容(回顾)质点动力学牛顿三定律从分析受力,来计算加速度、速度、位置随时间的变化(已知初始位置,初始速度)牛顿三定律的深入探讨,哪个更基本?惯性系。力的定义。惯性质量与引力质量。对于粒子与场的作用,作用力与反作用力的关系。相对论情况下,第二定律成立的形式。力学基础内容(重温)质点系力学内力和外力动量和角动量动能和势能质点系的质心,质心系动量守恒和角动量守恒及其成立的条件机械能守恒及其成立的条件非惯性参考系,非惯性力平动参考系转动参考系,科里奥利力,离心力力学基础内容(重温)刚体力学刚体模型角速度和角加速度转动惯量转动的角动量和转动动能力矩刚体的平面运动力学基础内容(重温)其他一些应用课题有心力场(万有引力和行星运动,带电粒子散射)碰撞(两体碰撞,散射截面)振动(阻尼振动,受迫振动,多维小振动)带电粒子的运动狭义相对论非线性力学流体力学连续介质体系的力学分析力学主要内容约束与虚功原理拉格朗日力学达朗贝尔原理,拉格朗日方程,泛函变分和哈密顿原理,运动积分、对称性和守恒定律哈密顿力学正则方程,正则变换,泊松括号,哈密顿-雅克比方程刚体的运动学和动力学分析力学的基础以牛顿三定律的经典力学为理论基础应用数学方法建立完整的理论体系得到一些原理性的结果有些结果推广到非经典的领域(如相对论和量子力学)更加自然