PN2218911||||122?????PNPM.所以||||MNPN的最小值为22.………………………………………………………… 12分22.(本小题满分12分)已知函数axxxf???)1ln()(,R?a.(Ⅰ)求函数)(xf的单调区间;(Ⅱ)若不等式xxfe1)(??对),0[???x恒成立,求实数a的取值范围.解析:(Ⅰ)1111)(?????????xaaxaxxf,1??x.(ⅰ)若0?a,则0)(??xf,所以)(xf在),1(???上单调递增;(ⅱ)若0?a,则当ax11???时,0)(??xf;当ax11???时,0)(??xf.所以,)(xf在)11,1(a???上单调递增;在),11(????a上单调递减.………………4分(Ⅱ)记xxaxxxfxge1)1ln(e1)()(????????)0(?x.则“不等式xxfe1)(??)0(?x恒成立”等价于“0)(min?xg)0(?x恒成立”.因为xaxxge11)(?????,而1e??xx,所以axaxxg????????2111)(.(ⅰ)若2?a,则0)(??xg,从而)(xg在),0[??上单调递增.所以0)0()(min??gxg,符合题意.(ⅱ)若2?a,因为0)1(1)1(e)1(1e)(222??????????xxxxgxx,所以xaxxge11)(?????在),0[??上单调递增.所以02)0()(min?????agxg.所以,存在0x,使得00xx??时,0)(??xg;当0xx?时,0)(??xg.此时,)(xg在),0(0x上单调递减,在),(0??x上单调递增.所以)()(0minxgxg?.因为)(xg在),0(0x上单调递减,所以0)0()()(0min???gxgxg,不合题意.综上,所求实数a的取值范围为]2,(??.……………………………………………12分