量传递过程。1954年D.I•阿尔农在用菠菜叶绿体研究二氧化碳同化的同时,发现叶绿素受光的激发产生电子,在传递过程中与磷酸化偶联,产生ATP,电子仍回到叶绿素分子上,继续上述过程,这一过程被称为循环光合磷酸化。几乎同时别人也证明,细菌中也存在着类似的过程。1957年D.I.阿尔农等又发现另一类型的光合磷酸化。在这个过程中,光使叶绿素从水中得到电子,电子传递过程中与希尔反应偶联,还原辅酶II,放氧,同时产生ATP,这一过程称为非循环光合磷酸化。光合作用中两个光反应系统的发现推动了光合磷酸化研究的不断深入。这项工作主要是美国植物生理学家R.埃默森及其合作者从40年代初到他逝世这十几年内进行的。1943年他们发现红光波段中,短波(〜650纳米)区比长波区(〜700纳米)的光合效率高。1957年他们又发现两者同时照射比单一照射所产生的光合效率高。根据他们的工作以及其他人的工作,英国的R.希尔等提出可能存在着两个光反应系统:系统I由远红光(〜700纳米)激发,系统II则依赖于较高能的红光(〜650纳米)。非循环光合磷酸化对此就是一个有力的支持事例。根据这一设想及大量实验结果,设计出一个“Z图解”,表达两个光反应系统的协同作用,得到了广泛的支持。由此掀起了研究两个光反应系统结构与功能的热潮,推动了光合作用的核心问题一一原初反应和水的光解问题的研究。进入80年代,光合反应中心的结构研究取得了重要突破,1982年西德生化学家H.米舍尔成功地分离提取出生物膜上的色素复合体,即光合反应中心。以后德国的蛋白质晶体结构分析专家R.休伯和J.戴维森,经过4年的努力,用X射线衍射分析的方法,测定出这个复合体的复杂的蛋白质结构。这一成果在光合作用研究上是一个飞跃,有力地促进了太阳光能转变为植物能的瞬间变化原理的研究。第十七讲植物的光合作用-中学生物论文交流友情提醒:教育资源库收集与整理,特别感谢原作者!