可以使系统在进入稳态后无稳态误差。Р(3)微分控制(D):在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性环节或有滞后环节,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。所以在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。特别对于有较大惯性或滞后环节的被控对象,比例积分控制能改善系统在调节过程中动态特性。PID控制器的参数整定是控制系统设计的重要内容,应根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。Р1.2.2 PID控制器参数整定的方法Р一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。由于实验测定的过程数学模型只能近似反映过程动态特,理论计算的参数整定值可靠性不高,还必须通过工程实际进行调整和修改。Р二是工程整定方法,它主要依赖工程经验,直接在控制系统试验中进行控制器参数整定,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减曲线法。三种方法都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。Р临界比例法:在闭合控制系统中,把调节器的积分时间置于最大,微分时间置零,比例度δ置于较大数值,把系统投入闭环运行,将调节器的比例度δ由大到小逐渐减小,得到临界振荡过程,记录下此时的临界比例度和临界振荡周期