全文预览

牛吃草问题含例题答案解析讲解

上传者:你的雨天 |  格式:docx  |  页数:9 |  大小:188KB

文档介绍
上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天Р  这是一道牛吃草问题,是比较复杂的牛吃草问题。Р  把每头牛每天吃的草看作1份。Р  因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份Р  所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份Р  因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份Р  所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份Р  所以45-30=15天,每亩面积长84-60=24份Р  所以,每亩面积每天长24÷15=份Р  所以,每亩原有草量60-30×=12份Р  第三块地面积是24亩,所以每天要长×24=份,原有草就有24×12=288份Р  新生长的每天就要用头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=头牛Р  所以,一共需要+=42头牛来吃。РР  两种解法:Р解法一: Р设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=每亩原有草量为*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24**80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)Р解法二: Р10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15亩,可以推出15亩每天新长草量 (28×45-30×30)/(45-30)=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

收藏

分享

举报
下载此文档