.欠励限制电路:为了防止励磁电流过分降低时,发电机定子电流和电压关系由滞后的功率因数角变为超前的功率因数角,导致发电机发生进相运行,使机组失去稳定或危及机组的安全运行,故设置欠励限制电路。Р4.过励限制电路:当系统电压剧降时,自动励磁调节器将对发电机进行强励,为了保证发电机和可控整流桥的安全,故设置过励限制电路将转子励磁电流限制在安全范围内。Р5.低压触发电路:在自并励型可控硅静止励磁系统中,当发电机端电压过度降低时,会导致励磁变压器副边电压过低,使励磁系统无法工作。这时装设低电压触发电路可使可控硅元件在瞬间完全导通,迅速提升励磁电流。Р1.4同步发电机励磁控制方式研究现状Р同步发电机励磁调节对提高电力系统稳定性起着重要的作用,随着快速励磁系统的广泛应用,励磁控制对电力系统稳定性的影响效果越来越明显,科技工作者对发电机励磁控制系统进行了长期而广泛的研究,取得了许多显著的成果。研究主要集中在两个方面:一是励磁方式的改进,二是励磁控制方式的改进。这两方面是相互联系的。随着控制理论的不断发展,励磁控制方式主要经历了三个发展阶段,即单变量控制阶段、线性多变量控制阶段和非线性多变量控制阶段。Р1.4.1基于单变量控制方式Р单变量控制阶段的控制规律是按发电机端电压偏差Vt的比例进行调节或Vt的比例一积分一微分进行调节(PID调节方式)。运用古典控制理论建立按Vt的比例进行的励磁调节是由于无法对控制对象进行精确的数学模型描述而采取的一种简单实用的控制方法,但对增益K的调整却出现了矛盾。要使闭环系统成为稳定系统,必须将增益K的值限制在一定范围,而要提高系统的稳态精度就得使增益K大于某一值,有时这二者是无法满足的。随之,就诞生了PID调节方式,它在一定程度上缓和了对单反馈量的励磁调节系统,按系统稳定性与按稳态调压精度对调节器放大倍数要求之间的矛盾,它就相当于一台可自动改变增益的比例式调节器。