线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.图②AQCPB图①AQCPB16.已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.压轴题答案1.解:(1)由已知得:解得c=3,b=2∴抛物线的线的解析式为(2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)设对称轴与x轴的交点为F所以四边形ABDE的面积====9(3)相似如图,BD=BE=DE=所以,即:,所以是直角三角形所以,且,所以.2解:(1),,,.点为中点,.,.,,.(2),.,,,,即关于的函数关系式为:.(3)存在,分三种情况:ABCDERPHQM21①当时,过点作于,则.,,.,,ABCDERPHQ,.ABCDERPHQ②当时,,.③当时,则为中垂线上的点,于是点为的中点,.,ABCMNP图1O,.综上所述,当为或6或时,为等腰三角形.3解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.∴△AMN∽△ABC.∴,即.∴AN=x.……………2分∴=.(0<<4)……………3分ABCMND图2OQ(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5.