全文预览

小升初——求阴影部分面积及周长(带答案)

上传者:hnxzy51 |  格式:doc  |  页数:11 |  大小:363KB

文档介绍
6平方厘米例25分析:四个空白部分可以拼成一个以2为半径的圆. 所以阴影部分的面积为梯形面积减去圆的面积, 4×(4+7)÷2-π=22-4π=9.44平方厘米例26解:将三角形CEB以B为圆心,逆时针转动90度,到三角形ABD位置,阴影部分成为三角形ACB面积减去个小圆面积, 为:5×5÷2-π÷4=12.25-3.14=9.36平方厘米例27解:因为2==4,所以=2 以AC为直径的圆面积减去三角形ABC面积加上弓形AC面积, π-2×2÷4+[π÷4-2] =π-1+(π-1) =π-2=1.14平方厘米例28解法一:设AC中点为B,阴影面积为三角形ABD面积加弓形BD的面积, 三角形ABD的面积为:5×5÷2=12.5 弓形面积为:[π÷2-5×5]÷2=7.125 所以阴影面积为:12.5+7.125=19.625平方厘米解法二:右上面空白部分为小正方形面积减去小圆面积,其值为:5×5-π=25-π阴影面积为三角形ADC减去空白部分面积,为:10×5÷2-(25-π)=π=19.625平方厘米例29.解:甲、乙两个部分同补上空白部分的三角形后合成一个扇形BCD,一个成为三角形ABC,此两部分差即为:π×-×4×6=5π-12=3.7平方厘米例30.解:两部分同补上空白部分后为直角三角形ABC,一个为半圆,设BC长为X,则 40X÷2-π÷2=28 所以40X-400π=56则X=32.8厘米例31.解:连PD、PC转换为两个三角形和两个弓形, 两三角形面积为:△APD面积+△QPC面积=(5×10+5×5)=37.5 两弓形PC、PD面积为:π-5×5 所以阴影部分的面积为:37.5+例32解:三角形DCE的面积为:×4×10=20平方厘米梯形ABCD的面积为:(4+6)×4=20平方厘米从而知道它们面积相等,则三角形ADF面积等于三角形EBF面积,阴影部分可补成

收藏

分享

举报
下载此文档