:右:由此得整理得由微分定义得例6计算.解:利用换元积分法得例7计算.解:利用分部积分法得例8求曲线上的点,使其到点的距离最短. 解:曲线上的点到点的距离公式为与在同一点取到最小值,为计算方便求的最小值点,将代入得令令得.可以验证是的最小值点,并由此解出,即曲线上的点和点到点的距离最短.高等数学基础第一次作业单项选择题⒈下列各函数对中,(C )中的两个函数相等.A.,B.,C.,D.,⒉设函数的定义域为,则函数的图形关于(C)对称.A.坐标原点B.轴C.轴D.⒊下列函数中为奇函数是(B).A.B.C.D.⒋下列函数中为基本初等函数是(C).A.B.C.D.⒌下列极限存计算不正确的是(D).A.B.C.D.⒍当时,变量(C)是无穷小量.A.B.C.D.⒎若函数在点满足(A),则在点连续。A.B.在点的某个邻域内有定义C.D.(二)填空题⒈函数的定义域是.⒉已知函数,则x2-x.⒊.⒋若函数,在处连续,则 e .⒌函数的间断点是.计算题⒈设函数求:.解:,,⒉求函数的定义域.解:有意义,要求解得,则定义域为⒊在半径为的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,试将梯形的面积表示成其高的函数.解:AROhEBC设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R直角三角形AOE中,利用勾股定理得则上底=故⒋求.解:=⒌求.解:⒍求.解:⒎求.解:⒏求.解:⒐求.解:⒑设函数讨论的连续性,并写出其连续区间.解:分别对分段点处讨论连续性(1)所以,即在处不连续(2)所以即在处连续由(1)(2)得在除点外均连续故的连续区间为《高等数学基础》第四次作业(一)单项选择题⒈若的一个原函数是,则(D ).A.B.C.D.⒉下列等式成立的是(D ).AB.C.D.⒊若,则(B ).A.B.C.D.⒋( B).A.B.C.D.⒌若,则(B ).