全文预览

查看金属流线方法

上传者:业精于勤 |  格式:doc  |  页数:9 |  大小:271KB

文档介绍
低于εc时,应变速率越小,金属的塑性成形性越好,这是由于形变速度减慢,热成形时易被再结晶消除所致,故塑性差的金属宜采用压力机成形。当应变速率高于εc时,应变速率越大,金属的塑性成形性越好,这是由于塑性变形过程中,变形能量转化的热能来不及传出,使金属温度上升所致,故强度高、塑性低、形状复杂的零件宜采用高速锤锻造、爆炸成形等应变速率高的加工方法。高速锤是在短时间内释放高能量而使金属成形的一种锻锤,打击速度为20m/s左右。但应变速率不宜过高,以防金属产生过烧缺陷。                         图4.1.11变形温度对钢                1-变形抗力曲线2-塑性曲线             的塑性成形性的影响            图4.1.12应变速率对金属塑性成形性的影响   3)应力状态通过受力物体内一点的各个截面上的应力状况简称为物体内一点处的应力状态。常用主应力图来定性说明物体内一点处的主应力作用情况。变形体内任一单元总可以找到三个相互垂直的平面,在这些平面上只有正应力而没有切应力。这些平面称为主平面,作用在主平面上的正应力就是主应力。主应力图共有9种,自左至右按塑性发挥的有利程度由高到低排列,如图4.1.13所示。图4.1.13主应力图   由于压应力有利于防止裂纹的产生和扩展,故压应力个数越多、数值越大,金属的塑性就越好。反之,拉应力的个数越多、数值越大,金属的塑性就越差。在模锻、挤压等成形加工中,变形区金属处于三向压应力状态(见图4.1.14a)有利于提高金属塑性;拉拔时,金属两向受压,一向受拉(见图4.1.14b),使金属的塑性降低,故不宜用于塑性差的金属。因压应力使金属内部的摩擦力增大,从而使变形抗力增大,拉应力则反之。此外,同号应力状态(通常各向应力同为压)较之异号应力状态变形抗力大,故拉拔时金属的变形抗力远小于挤压和模锻。

收藏

分享

举报
下载此文档