由反应共混所得的合金,另一种反应共混法是将两种分别带有末端反应活性的LCP继续进行缩聚,使一种结构的LCP接到另一种结构的分子链上,形成嵌段聚合物。物理共混法则是通过溶液、熔融或机械共混实现两种LCP的混合,由于这种共混物的成本仍然很高,仅当为改善某性能或达到某种协同效应才选择这种体系。3.LCP与填料的混合体系在LCP中添加填料,不仅可降低成本,而且可以减小LCP的表面纤维化,降低取向性,缓和材料各向异性的缺点。4.LCP合金为了解决LCP的各向异性、接缝强度低以及成本高的问题,各大公司大力开发LCP系列合金。向工程塑料中加入LCP后,可以降低粘度,改善加工性能,同时,进一步提高力学性能等。如LCP/聚醚砜、LCP/聚酰胺、LCP/聚碳酸酯和LCP/聚四氟乙烯等。5.LCP与热塑性聚合物的共混体系普通热塑性聚合物的缺点可以通过与LCP的共混得以改善,从而拓宽LCP的应用领域,且这种方法还具有成本不太高的优势。以热塑性聚合物为基体,LCP为增强剂,使LCP在共混加工过程中就地形成微纤结构,制成原位复合材料,大大提高材料的力学性能。同时LCP熔体具有较低的粘度,加入热塑性树脂中可减少对设备的磨损和能耗。我国中科院化学所、北京大学、清华大学、浙江大学、晨光化工研究院、北京市化工研究院等单位,自20世纪80年代开始相继开展了LCP的研究开发工作。目前全国有数十单位在开展这一研究,研究内容主要包括Xydar、Vectra、全芳香族LCP及共混改性等,这些项目大都处于试验阶段。晨光化工研究院已建立起小规模生产装置,目前已能提供少量产品。今后要加速产业化工作,大力加强LCP的应用研究,使LCP的实际应用领域及应用量逐步扩大。液晶聚合物的性能十分优异,越来越受到人们的关注,其应用领域不断扩大,新产品不断被研制,且工业化的液晶聚合物种类越来越多,今后在工业、科技及人们生活中将发挥更大作用。