标系具有先进性和严密性,但1954年原北京坐标系毕竟在我国测绘工作中潜移默化,影响深远。40年来,数十万个国家控制点都是在这个系统内完成计算的,一切测量工程和测绘成果均无例外地采用着这个系统。为了既体现1980年国家大地坐标系的严密性,又照顾到1954年原北京坐标系的实用性,有的部门和单位想出一种两全其美的办法,于是就产生了1954年新北京坐标系。1954年新北京坐标系的成果,就是将1980年国家大地坐标系的空间直角坐标经三个平移参数平移变换至克拉索夫斯基椭球中心,就成了新北京坐标系的成果。所以说,新北京坐标系的成果实际上就是从1980年大地坐标系整体平差成果转换而来的。1.2地心坐标系1.2.1建立地心坐标系的意义和方法地心坐标系中的“地心”二字意指地球的质心。在地心空间大地平直角坐标系中用XD、YD、ZD表示点的位置,地心大地坐标系中用LD、BD、HD表示点的位置。由于前者可以通过卫星大地测量获得点的空间三维直角坐标,并不涉及椭球及其定位。但地心大地坐标系则要涉及椭球的大小和定位。所以地心直角坐标系是GPS定位中采用的基本坐标系。1.2.2地心坐标系的表述形式地心直角坐标系和地心大地坐标系。1.2.3WGS—84大地坐标系自60年代以来,美国国防部制图局(DMA)为建立全球统一坐标系统,利用了大量的卫星观测资料以及全球地面天文、大地和重力测量资料,先后建成了WGS—60、WGS—66和WGS—72全球坐标系统。于1984年,经过多年修正和完善,发展了一种新的更为精确的世界大地坐标系,称之为美国国防部1984年世界大地坐标系,简称WGS—84。WGS—84于1985年开始使用,1986年生产出第一批相对于地心坐标系的地图、航测图和大地成果。由于GPS导航定位全面采用了WGS—84,用户可以获得更高精度的地心坐标,也可以通过转换,获得较高精度的参心大地坐标系坐标。如图2-5