高于石墨负极。在改性方面一般采用阳离子参杂改善LMO的高温循环稳定性。Р Р 5.镍钴锰酸锂NMCР NMC是现今锂离子电池研究的一大热点,与钴酸锂相比,具有以下显著优势:Р 成本低:由于含钴少,成本仅相当于钴酸锂的1/4且更绿色环保。Р 安全性好:安全工作温度可达170℃,而钴酸锂仅为130℃Р 电池的循环使用寿命延长了45%。Р 另外值得一提的是与NCA类似的高Ni三元材料(LiNi0.8Co0.1Mn0.1O2)有更高的能量/功率密度(能够在高Ni含量下会有更多的Li脱出而保持其结构稳定)。目前应用的常规523和622体系则是加入更多的Mn和Co是为了更好的平衡安全和循环性能。Р 聚阴离子型化合物Р 1.磷酸铁锂LFPР LFP拥有良好的热稳定性和功率性能,结构如图4C,其主要缺点是较低的电位和较差的离子导电性。对LFP进行纳米化,碳包覆和金属参杂是提高其性能的方法。如果不用炭包覆有纳米化的LFP,使用性能较好的导电剂混合使用也同样可实现良好的导电性。通常纳米化的LFP电极材料的低压实密度限制了LFP电池的能量密度。Р 其它橄榄石结构包括LiMnPO4(LMP),比LFP提高了0.4V的平均电压(表1),从而提高了能量密度。Р 此外还有Li3V2(PO4)3(LVP)有相当高的工作电压(4.0V)和良好的容量(197mAh/g)。LVP/C纳米复合材料在5C的高倍率下也表现出95%的理论容量,低温下也表现出比LFP好的性能。但是LVP没有大规模应用的原因主要在于1.合成的成本和原材料的毒性对环境和人体的伤害2.在高压下电解质的匹配问题。Р 2.LiFeSO4F(LFSF)Р 另外一种聚阴离子盐材料LFSF,其具有3.6V平台和相对较高的理论比容量(151mAh/g),而且LiFeSO4F具有更好的离子/电子导电性,因此它基本不需要碳涂层或纳米化颗粒。电化学如下图所示。