全文预览

基于matlab算法的可靠度分析

上传者:学习一点 |  格式:doc  |  页数:44 |  大小:662KB

文档介绍
随机变量进行当量正态化转换为正态分布的函数,而且对于非正态基本随机变量当量正态化造成一些误差,而且这种误差随着基本随机变量非线性程度的增加而提高。因此学者们就提出了一种规避将基本随机变量当量正态化,直接计算结构可靠指标的方法,从而提高结构可靠指标的计算精度。Р对失效概率的贡献主要是在结构失效最大可能点附近的积分,因此只要将积分局部化,集中在该点附近的失效区域内进行,就能够得到失效概率积分得近似结果。失效概率的渐近积分是在失效最大可能点处,将基本变量概率密度函数的对数展开成Taylor级数并取至二次项,将功能函数也作Taylor级数展开,用所得超切平面或二次超曲面来逼近实际失效面,再利用一次二阶矩方法和二次二阶矩方法的成果即可完成失效概率的渐进积分。Р在基本随机变量空间中用渐进积分方法计算结构的失效概率,无须变量空间的变换也不用到变量的累计分布函数,但要计算基本随机变量概率密度函数对数的一阶和二阶倒数,使处理问题的繁琐程度有所增加。Р(1)求解x*,根据解最优化问题的拉格朗日乘子法,求解x*。Р(2)计算。Р(3)计算。Р(4)计算。Р一次渐进法避免将基本随机变量当量正态化,减小了由于基本随机变量当量正态化所带来的误差,使得计算精度有所提高,但是这导致的结果就是计算的复杂程度有所增加,目前用此方法进行结构可靠度计算还应用的较少。Р3.4 Breitung法Р结构随机可靠度分析的一次二阶矩方法,概念比较简单,编程比较方便,因此在工程中有较广泛的应用,但是这种方法有因为只考虑到了功能函数的一阶倒数,因此,取得的关于功能函数的信息较少,得到的结果普遍差别较大,特别是当功能函数非线性程度较高时产生的误差更大。功能函数的二阶倒数不仅考虑到了一阶倒数的信息,功能函数的二阶倒数还考可以运用功能函数在验算点附近的凹向、曲率等非线性性质,从而提高结构可靠度分析的精度。目前在工程中应用较为广泛。

收藏

分享

举报
下载此文档