如中子的电偶极矩、中微子的质量和质子的寿命等都要通过低能核物理实验测定;粒子间相互作用的重要知识也可由中高能核物理提供。②核多体系运动的研究。核多体系是运动形态很丰富的体系,过去主要研究了基态和低激发态的性质以及一些核反应机制,对于高自旋态、高激发态、大变形态以及远离β稳定线核素等特殊运动形态的研究才刚开始,对基态和低激发态的实验知识也不足,远小于多体波函数提供的信息。核运动形态的研究将在相当长的时期内成为核物理基础研究的主要部分。核技术的广泛应用是本阶段的重要特点。常用的小型加速器已投入工业生产,成千上万台加速器在研究所、大学、工厂和医院中运转,钴60放射源的使用更为普遍;另一方面,几乎没有一个核物理实验室不在从事核技术的应用研究。核技术应用主要有以下几个方面:①为核能源的开发服务,为大型核电站到微型核电池提供更精确的数据和更有效的利用途径。②同位素的应用,这是应用最广泛的核技术,包括同位素示踪、同位素仪表和同位素药剂等。③射线辐照的应用,利用加速器及同位素辐射源,进行辐照加工、食品消毒保鲜、辐照育种、探伤以及放射医疗。④中子束的应用,除利用中子衍射分析物质结构外,还用于辐照、掺杂、测井、探矿及生物效应,如治癌。⑤离子束的应用,大量的加速器是为了提供离子束而设计的,离子注入技术是研究半导体物理和制备半导体器件的重要手段,离子束则是无损、快速、痕量分析的主要手段,特别是质子微米束对表面进行扫描分析,对元素含量的探测极限可达1×10-15~1×10-18克,是其他方法难以比拟的。在原子核物理学诞生、壮大和巩固过程中,核技术的应用使核物理基础的研究获得广泛的支持,后者又为前者不断开辟新的途径。这两方面的需要推进了粒子加速技术和核物理实验技术的发展;而这两门技术的新发展,又有力地促进了核物理的基础和应用的研究。这种相互推动、共同发展的趋势,将在核物理的新阶段中发挥日益巨大的作用。