】反比例函数的应用;反比例函数的图象.【分析】首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.【解答】解:由矩形的面积8=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.【点评】本题考查了反比例函数的应用及反比例函数的图象,反比例函数的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.二.填空题9.计算:=a﹣1.【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==a﹣1.第10页(共23页)故答案为:a﹣1【点评】此题考查了分式的加减法,分式的加减运算关键是通分,通分的关键是找最简公分母.10.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A?OB?,若∠AOB=15°,则∠AOB?的度数是30°.【考点】旋转的性质.【专题】几何图形问题.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A?OB?,∴∠A?OA=45°,∠AOB=∠A?OB?=15°,∴∠AOB?=∠A?OA﹣∠A?OB=45°﹣15°=30°,故答案是:30°.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A?OA=45°,∠AOB=∠A?OB?=15°是解题关键.11.要使式子=﹣a成立,a的取值范围是a≤0.【考点】二次根式的性质与化简.【分析】根据二次根式的性质进行解答即可.【解答】解:∵式子=﹣a成立,∴a≤0.故答案为:a≤0.【点评】本题考查的是二次根式的性质与化简,熟知二次根式的化简法则是解答此题的管家.12.当分式的值为0时,x的值为2.