3D增强人脸识别算法。3D可变形模型首先经过200个高精度的3D人脸模型构建一个可变形的3D人脸模型,用这个模型来对给定的人脸图像拟合,获得一组特定的参数,再合成任何姿态和光照的人脸图像n卜捌。基于形状恢复的3D增强人脸识别算法是利用通用的3D人脸模型合成新的人脸图像,合成过程改变了一定的姿态与光源情况。曲率是最基本的表示曲面信息的局部特征,因而最早用来处理3D人脸识别问题的是人脸曲面的曲率。Lee禾lJ用平均曲率和高斯曲率值,将人脸深度图中凸的区域分割出来。7、本章小结上面研究的各种识别方法都获得了一定的成功,但各有优缺点:(1)基于几何特征的识别方法很简单,但当前还没有形成特征提取的统一标准,较难从图像中抽取稳定的特征,特别是特征受到遮挡或有较大表情变化时,其对姿态变化的鲁棒性也较差。(2)基于代数特征的识别方法经过各种变换方法来提取主分量,代数特征向量是具有一定稳定性的,基于该方法的识别系统对不同的角度和表情都有一定的鲁棒性。(3)基于连接机制的识别方法其优点是保存了图像中的材质信息,且特征提取不复杂。但受到原始图像数据量庞大的影响,识别时间长,特别是当样本数量大大增加时,会严重影响其性能。(4)基于三维数据的人脸识别方法使用三维数据,是人脸识别的新思路,当前提取但信息还有一定困难,且需要很大数据存储和计算量。本章介绍了当前常见的一些人脸检测与识别方法,从识别率来看各种方法在指定数据库上的识别性能高低不同,总体来说很难总结哪种方法更为优越。各种识别方法都有各自的特点,不同的场合识别效果不同。参考文献:1、卓永亮.基于web的人脸检测与人脸识别2、李寅.基于代数特征的人脸识别研究及其DSP实现3、王红.基于肤色的人脸检测及识别研究4、赵明华.人脸检测和识别技术的研究5、王跃明.表情不变的三维人脸识别研究6、蒋成成.三维人脸识别方法研究7、李进.基于代数特征的人脸识别研究