于有载调压变压器(OLTC)、发电机及其励磁控制系统和负荷模型等对电压稳定影响的研究。Р2.2.2大干扰分析法Р潮流解的存在和小干扰电压稳定分析的重点在于把电力系统置于一个具有一定安全裕度的运行方式。电力系统遭受线路故障和其它类型的大冲击,或在小干扰稳定裕度的边缘负荷的增加,都可能使系统丧失稳定。这是系统动态行为的数学描述必须保留其非线性特性的原因。这方面的研究主要有时域仿真法和能量函数法。Р(1)时域仿真法是研究电力系统动态电压特性的最有效方法,目前主要用来认识电压崩溃现象的特征,检验电压失稳机理,给出预防和校正电压稳定的措施等,适合于任何电力系统动态模型。但是,电压稳定的时域仿真研究还存在一些难点,主要包括时间框架的处理、负荷模型的适用性以及结论的一般化问题。Р(2)能量函数法是直接估算动态系统稳定的方法,可避免耗时的时域仿真,基本思想是利用能量函数得到状态空间中的一个能量势阱,通过求取能量势阱的边界来估计扰动后系统的稳定吸引域,并据此判断系统在特定扰动下的稳定性。能量函数法在判断暂态功角稳定方面已取得了相当多的成果,为系统中电压稳定薄弱区域的识别和不同规模系统间电压稳定性的比较提出了良好的依据,但它对于具有复杂的动态特性和有损耗的输电系统而言,并不能保证能量函数存在,目前在研究电压稳定方面仍处于起步阶段。Р2.2.3非线性动力学方法Р电压稳定裕度指标算法的研究都是针对线性化了的系统方程,即假设初始条件的微小变化只能导致输出的微小变化,但由于电力系统是一个非线性的动力学系统,临界点附近系统状态的剧烈变化,使得临界点附近这一假设往往不成立。有时,它也不能回答如果系统越过稳定极限点时,其状态将如何变化的问题。为了确保电力系统的安全性,人们寻找能够分析并控制非线性作用的新方法,基于非线性动力学的研究日益增多,如中心流形理论、分岔理论和混沌理论,其中研究最多的是分岔理论[7]。