同的,也就是:表示单位“1”的量×分率=分率的对应量。但三种问题的已知和未知不同,因而解决问题的方法也不同。(1)求一个数的几分之几是多少,是已知表示单位“1”的量(这个数)和分率(几分之几),求分率的对应量,就用这个数去乘上几分之几。即:表示单位“1”的量×分率=分率的对应量。如:兔有24只,鸡是兔的3/4,鸡有多少只?在这道题中,单位“1”的量是兔,求鸡有多少只就是求兔的3/4是多少。根据数量关系式:兔的只数(表示单位“1”的量)×3/4(分率)=鸡的只数(分率的对应量),列式为:24×3/4。(2)已知一个数的几分之见是多少,求这个数,是已知分率(几分之几)和分率对应量,去求表示单位“1”的量,就需用乘法的逆运算,即用几分之几去除对应的已知数。也就是:分率的对应量÷分率=表示单位“1”的量。如:男生有18人,是女生的6/7,女生有多少人?在这道题中,单位“1”的量是女生,求女生有多少人?也就是求单位“1”的量是多少。根据数量关系式:男生人数(分率的对应量)÷6/7(分率)=女生的人数(表示单位“1”的量),列式为:18÷6/7。(3)求一个数是另一个数的几分之几,是已知表示单位“1”的量(另一个数)和分率对应量(一个数)去求分率,也需要用乘法的逆运算,即用这个数去除以另一个数,并写成分数的形式。如:桃树21棵,梨树28棵,桃树是梨树的几分之几?用桃树的棵树(分率对应量)÷梨树的棵树(表示单位“1”的量)=分率,列式为:21÷28。大家在通过大量练习后,就会发现分数乘法应用题的共同特点:单位“1”的量已知的分数应用题,用乘法计算。反之,单位“1”的量未知的分数应用题用什么方法计算呢?通过逆向思维,我们就可以知道:“用除法计算”。可见,要分清分数乘除法应用题的关键是看单位“1”的量已知与未知,单位“1”的量已知用乘法计算,单位“1”的量未知用除法计算或用解方程的方法计算。