。它的好处是可以借助“求底边线段数”而得出三角形的个数。我们也可以以小块个数作为分类的标准来计算:图中共有6个小块。由1个小块组成的三角形有3个; 由2个小块组成的三角形有5个; 由3个小块组成的三角形有1个; 由4个小块组成的三角形有2个; 由6个小块组成的三角形有1个。所以,共有三角形 3+5+1+2+1=12(个)。右图中有多少个三角形?解:假设每一个最小三角形的边长为1。按边的长度来分类计算三角形的个数。边长为1的三角形,从上到下一层一层地数,有 1+3+5+7=16(个); 边长为2的三角形(注意,有一个尖朝下的三角形)有1+2+3+1=7(个); 边长为3的三角形有1+2=3(个); 边长为4的三角形有1个。所以,共有三角形 16+7+3+1=27(个)。在下图中,包含“*”号的长方形和正方形共有多少个?解:按包含的小块分类计数。包含1小块的有1个;包含2小块的有4个; 包含3小块的有4个;包含4小块的有7个; 包含5小块的有2个;包含6小块的有6个; 包含8小块的有4个;包含9小块的有3个; 包含10小块的有2个;包含12小块的有4个; 包含15小块的有2个。所以共有 1+4+4+7+2+6+4+3+2+4+2=39(个)。 练习 1.下列图形中各有多少条线段? 2.下列图形中各有多少个三角形? 3.下列图形中,各有多少个小于180°的角? 4.下列图形中各有多少个三角形? 5.下列图形中各有多少个长方形? 6.下列图形中,包含“*”号的三角形或长方形各有多少? 7.下列图形中,不含“*”号的三角形或长方形各有几个? 答案与提示 1.(1)28;(2)210。2.(1)36;(2)8。 3.(1)10;(2)15。 4.(1)9个;(2)16个;(3)21个。 5.(1)60个;(2)66个。 6.(1)12个;(2)32个。 7.(1)21个;(2)62个。