,两次归一问题。根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)例一个织布工人,在七月份织布4774米,照这样计算,织布6930米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。6930÷(4774÷31)=45(天)(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。数量关系式:单位数量×单位个数÷另一个单位数量=另一个单位数量单位数量×单位个数÷另一个单位数量=另一个单位数量。例修一条水渠,原计划每天修800米,6天修完。实际4天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。800×6÷4=1200(米)(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。解题规律:(和+差)÷2=大数大数-差=小数(和-差)÷2=小数和-小数=大数