化学性质相似的化合物,且能够被定量测定。替代物在样品预处理前定量加入样品中,随样品走完预处理和仪器分析的全过程。由于替代物不断存在于样品中,可以认为替代物的损失或者玷污的程度,即回收率,能够准确测量。又由于替代物和目标物的物理化学性质相似,在预处理过程中两者的损失或玷污的程度是一致的。因此,未知目标物在预处理过程中的回收率,可由已知的替代物的回收率来衡量。这就是替代物在环境样品的分析中的作用。鉴于对替代物的要求,样品的替代物通常是目标物的同位素化合物。例如,测定多环芳烃时,可选用萘、二氢苊、菲、屈等的氘代化合物。它们的物理化学性质与待测的目标物极其相似,萃取过程中的损失或玷污是一致的。经过气相色谱柱的分离后,氘代多环芳烃可以与待测的多环芳烃部分分离。接在色谱后的质谱检测器,可把这些质量数不同的氘代物检出。由于氘代物在天然环境样品中含量极微,替代物的回收率可视为目标物的回收率。2.内标物、替代物与回收率的关系目标物回收率的计算依靠内标物,内标物与替代物一样,不应在样品中出现,也不应是目标物。但对其的物理化学性质的要求不像替代物那么严,只要与目标物相近,在检测器上能被定量检测就行。例如,在分析多环芳烃时,内标物可以是氘代物,也可以是甲基或硝基苯类化合物。内标物在每个样品预处理后,仪器分析前加入样品中,同处理过的试样一起走完仪器分析的全过程。内标物的作用是计算替代物的回收率,美国EPA标准方法中也用来作定量分析的依据。回收率过高或过低说明操作过程有误差,应该避免。替代物的回收率在40%至120%间,分析误差在要求的范围内。这与传统的加标回收率必须达到近100%的要求有很大差别。传统的定量分析一般是利用工作曲线来进行的,其间的内标物可校正仪器分析的误差,对于预处理过程中误差的校正无能为力,因此希望回收率接近100%。而采用替代物后,定量分析依靠替代物进行,利用回收率对数据进行校正。