全文预览

用脉冲响应不变法和双线性变换法设计iir数字滤波器分析报告

上传者:科技星球 |  格式:doc  |  页数:15 |  大小:1825KB

文档介绍
看出,在零频率附近,模拟角频率Ω与数字频率ω之间的变换关系接近于线性关系;但当Ω进一步增加时,ω增长得越来越慢,最后当Ω→∞时,ω终止在折叠频率ω=π处,因而双线性变换就不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,从而消除了频率混叠现象。但是双线性变换的这个特点是靠频率的严重非线性关系而得到的,如前边式(4)及图3所示。图3双线性变换法的频率变换关系由于这种频率之间的非线性变换关系,就产生了新的问题。首先,一个线性相位的模拟滤波器经双线性变换后得到非线性相位的数字滤波器,不再保持原有的线性相位了;还有一点,就是这种非线性关系要求模拟滤波器的幅频响应必须是分段常数型的,即某一频率段的幅频响应近似等于某一常数(这正是一般典型的低通、高通、带通、带阻型滤波器的响应特性),不然变换所产生的数字滤波器幅频响应相对于原模拟滤波器的幅频响应会有畸变,如图4所示。图4双线性变换法幅度和相位特性的非线性映射对于分段常数的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各个分段边缘的临界频率点产生了畸变,这种频率的畸变,可以通过频率的预畸来加以校正。也就是将临界模拟频率事先加以畸变,然后经变换后正好映射到所需要的数字频率上。由于双线性变换法获得的数字滤波器频率响应特性中不会出现混叠现象,因此可以适用于高通、带通和带阻滤波器的设计。四、设计步骤脉冲响应不变法设计IIR数字低通滤波器步骤:(1)将数字滤波器设计指标转换为相应的模拟滤波器指标。rad/sdBrad/sdB(2)设计相应的模拟滤波器,得到模拟系统函数Ha(s)。根据单调下降要求,选择巴特沃斯滤波器。取N=9(3)按照下面公式,将模拟滤波器系统函数Ha(s)转换成数字滤波器系统函数H(z)。,按照上边的式子求解计算相当复杂,我们可以利用MATLAB软件来简化计算过程,调用MATLAB信号处理工具箱函数进行设计。

收藏

分享

举报
下载此文档