全文预览

基于RBF神经网络整定的PID控制器设计及仿真

上传者:非学无以广才 |  格式:doc  |  页数:35 |  大小:0KB

文档介绍
和专家控制相结合,扬长避短,发挥各自的优势,形成所谓智能PID控制。Р神经网络是一个由大量简单的处理单元广泛连接组成的系统,用来模拟人脑神经系统的结构和功能。它从开始研究到发展并不是一帆风顺的,经历了兴起到低潮,再转入新的高潮的曲折发展道路。20世纪80年代中期以来,在美国、日本等一些西方工业发达国家里,掀起了一股竞相研究、开发神经网络的热潮。近十多年来人工神经网络的发展也表明了,这是一项有着广泛的应用前景的新型学科,它的发展对目前和未来科学技术水平的提高将有重要影响。Р近十年来,神经网络理论与实践有了引人注目的进展,它再一次拓展了计算概念的内涵,使神经计算、进化计算成为新的学科,神经网络的软件模拟得到了广泛的应用。科技发达国家的主要公司对神经网络芯片、生物芯片情有独钟。例如Intel公司、IBM公司和HNC公司已取得了多项专利,已有产品进入市场,被国防、企业和科研部门选用,许多公众手中也拥有神经网络实用化的工具,其商业化令人鼓舞。神经网络在国民经济和国防科技现代化建设中具有广阔的应用领域和发展前景。神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学能力,特别适用于处理需要同时考虑多因素和多条件的、不精确和模糊的信息处理问题。它主要应用领域有:语音识别、图像识别、计算机视觉、智能机器人、故障诊断、实时语言翻译、企业管理、市场分析、决策优化、物资调运、自适应控制、专家系统、智能接口、神经心理学、心理学和认知科学研究等等。РPID控制要取得较好的控制效果,就必须通过调整好比例、积分、微分三种控制作用,形成控制量中既有相互配合又相互制约的关系。这种关系不一定是简单的线性组合,从变化无穷的非线性组合中可以找出最佳关系。神经网络所具有的任意非线性表达能力,可以通过对系统性能的学习来实现具有最佳组合的PID控制。因此基于神经网络的PID不仅能适应环境变化,且有较强的鲁棒性。

收藏

分享

举报
下载此文档