种多样[11,12],可大致归为四大类:纳米单元与高分子直接共混,在高分子基体中原位生成纳米单元;在纳米单元存在下单体分子原位聚合生成高分子及纳米单元和高分子同时生成。各种制备纳米复合材料方法的核心思想都是要对复合体系中纳米单元的自身几何参数、空间分布参数和体积分数等进行有效的控制,尤其是要通过对制备条件(空间限制条件,反应动力学因素、热力学因素等)的控制,来保证体系的某一组成相至少一维尺寸在纳米尺度范围内(即控制纳米单元的初级结构),其次是考虑控制纳米单元聚集体的次级结构。Р2.1 纳米单元与高分子直接共混Р 此法是将制备好的纳米单元与高分子直接共混,可以是溶液形式、乳液形式,也可以是熔融形式共混。例如 M.YOSHIDA等人Р[13]利用反相胶乳制备纳米TiO2粒子,在N-甲基吡咯烷酮(NMP)中与聚酰亚胺溶液共混,制备出纳米TiO2/PI复合材料;中条澄[ 14]报道用表面处理过的粒径约10 nm的TiO2粒子[3.5%(质量分数)]与PP熔融共混,制成半透明、机械性能比纯PP提高的复合材料。Р2.1.1 纳米单元的制备Р 可用于直接共混的纳米单元的制备方法种类繁多[15~18],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法)。总体上又可分为物理方法、化学方法和物理化学方法三种。Р 物理方法有物理粉碎法,采用超细磨制备纳米粒子,利用介质和物料间相互研磨和冲击, 并附以助磨剂或大功率超声波粉碎,达到微粒的微细化;物理气相沉积法(PVD): 在低压的惰性气体中加热欲蒸发的物质,使之气化,再在惰性气体中冷凝成纳米粒子,加热源可以是电阻加热、高频感应、电子束或激光等,不同的加热方法制备的纳米粒子的量、大小及分布等有差异;还有流动液面真空蒸发法