例.我们的目标是寻求空间变换T,使MI(T) 最大.。针对前面所做假设,令T = T1*T2;其中,T1 为平移矩阵,T2为旋转矩阵。Р 最近邻插值法的精确度很低,而双线性插值法会产生新的灰度值。这对于联合直方图的统计是不利的。因为新加入的灰度值使得随着Tα的一些小变动,联合直方图中就会增加新的象素对,或者减少象素对,从而互信息值变化比较大,也就是互信息函数曲线会不光滑,这样不利于优化。因此为了消除新产生的灰度值的不利影响,我们在配准过程中引入了另外一种插值法:PV(Partial Volume)插值法。从产生插值图像这个方面来说,PV 插值法不能算是一种插值方法,它是专门针对联合直方图的更新而设计的。和双线性插值法一样,PV 插值法也是利用点Tα(X)的四个最近邻点和权值,可是,不同于双线性插值法的是,PV 插值法不是根据最近邻点的加权平均所得到的灰度值,从而更新联合直方图,而是根据权值使周围四个象素点都贡献于联合直方图的统计,如图1所示。Р可用公式表示为:Р (2-1) (2-2) Р Р图1 pv插值法Р 2.2 特征点的提取Р 由于角点是景物轮廓线上曲率的局部极大点,对掌握景物的轮廓特征具有决定作用。一旦找到了景物的轮廓特征点也就大致掌握了景物的形状。直观的讲,角点就是图像上所显示的物体边缘拐角所在的位置点。Р Harris角点检测法[3]是一种基于图像灰度的检测方法,这类方法主要通过计算点的曲率及梯度来检测角点。该方法是由Harris和Stephen提出来的,也叫Plessey角点检测法。其基本思想与Moravec角点算子相似,但对其作了许多改进。Р Moravec角点算子计算各象素沿小同方向的平均灰度变化,选取最小值作为对应象素点的角点响应函数。定义在一定范围内具有最大角点响应的象素点为角点。假设图像的灰度定义为I那么平移(x,y)所得到的灰度变化的计算公式为: