,还会增加混凝土的干缩度,使其在早期产生干缩裂缝。加上氯盐本身具有较强的吸湿性,从而加速了钢筋的腐蚀。Р 2.混凝土不密实或存在裂缝。混凝土密实度不良和构件上产生的裂缝,往往是造成钢筋腐蚀很重要的原因。尤其当水泥用量偏少、水灰比不当,在混凝土浇筑过程中振捣不实,产生露筋、蜂窝麻面和裂缝时,就会给水和氧及其它侵蚀性介质的渗透创造条件,从而加速钢筋的锈蚀。Р 3.混凝土“碳化”。混凝土的“碳化”,是指空气中的二氧化碳气体在混凝土表层逐渐为氢氧化钙的碱性溶液所吸收,相互生成碳酸钙的现象或碳化的结果,使混凝土的PH值不断下降,并不断向内部深化,当碳化深度达到或超过钢筋保护层时,钢筋表面的氧化铁保护膜便遭到破坏,使钢筋失掉了保护的屏障。这时,大气中含有的工业废气,如氯化氢等将被棍凝土吸收并与氢氧化钙结合,使混凝土碱度迅速下降,钢筋遭受腐蚀。Р 4.高强钢筋中的应力腐蚀。高强钢筋在应力的作用下,容易导致氧化铁保护膜的破坏,裂缝比较活化,并作为阳极而腐蚀。同时,由于钢筋中具有很高的拉应力和高强钢筋的低变形性能,腐蚀和应力共同作用,加速了裂缝的深度发展,使钢筋在看不到明显腐蚀的情况下突然产生断裂。Р 3.2混凝土中钢筋的腐蚀防范措施Р 从目前的技术条件来看,混凝土结构物中钢筋腐蚀的检测方法主要包括破损法和非破损法(电阻棒法、涡流探测法、声发射探测法自然电位法、交流阻抗谱法、线性极化法、恒电量法等许多种),修复技术主要有补丁法、电化学氯化物萃取技术及再碱化技术等几种。在工程实际中,需要针对具体情况选用合适的检测方法和修复技术可采用单一的检测方法和修复技术,必要时也可采用多种检测法和修复技术相结合的方法。Р 4、结束语Р 在建筑工程项目质量管理越来越严的今天,钢筋混凝土结构中的钢筋的腐蚀问题日益引起人们的重视。因此,了解发生腐蚀的机理,进而采取针对性的防范措施,是保证工程质量的必要前提和要求。