个单位的“海明距离”(1 <= D <= 7)。“海明距离”是指对于两个编码,他们的二进制表示法中的不同二进制位的数目。看下面的两个编码 0x554 和 0x234 之间的区别(0x554 表示一个十六进制数,每个位上分别是 5,5,4):Р 0x554 = 0101 0101 0100Р 0x234 = 0010 0011 0100Р 不同的二进制位: xxx xxР因为有五个位不同,所以“海明距离”是 5。Р【输入】Р输入文件名为hamming.in,文件中只有一行,包括 N, B, D。Р【输出】Р输出文件名为hamming.out,其中共有N 个编码(用十进制表示),要排序,十个一行。如果有多解,你的程序要输出这样的解:假如把它化为 2^B 进制的数,它的值要最小。Р【样例输入】Р16,7,3Р【样例输出】Р0 7 25 30 42 45 51 52 75 76Р82 85 97 102 120 127Р进制穷举、复杂穷举、穷举的优化Р(1)丑数(humble.bas) (已做,需练习)()Р【问题描述】Р对于一个给定的素数集合 S = {p1, p2, ..., pK}(也就是说,p1、p2、……、pk都是给定的素数),考虑那些质因数全部属于S 的数的集合——这个集合中的数包括:p1, p1*p2, p1*p1, p1*p2*p3,……。称由这些数构成的集合为相应S的丑数集合。Р注意:规定 1 不是丑数。Р你的任务是对于输入的集合S,去寻找丑数集合中第N个丑数。Р【输入】(humble.in)Р第1行:两个由空格隔开的整数K 和 N, 此处1<= K<=100,1<=N<=100,000;Р第 2 行:K个由空格隔开的整数,它们都是集合S的元素。Р【输出】(humble.out)Р一行,输出第N个丑数。Р【输入样例】Р4 19Р2 3 5 7Р【输出样例】Р27