写法千差万别。不同的人写出的同一个数字都有差别,即使同一个人在不同的时候也会有不同的写法。笔划的书写顺序经常发生变化,因此极大地增加了匹配的难度。一般人写字时都不会一笔一划的书写,为了节省时间,连笔字是自然而然的事情,对于结构识别而言,连笔一方面使笔划种类大大增加,甚至达到难以归纳的程度;另一方面,连笔又使得笔段抽取难度大增,因为连笔会增加一些冗余笔段,连笔造成的畸变又会使笔段方向严重离散。总之,连笔不论对于基于哪种基元的结构识别都是严峻的挑战。这是造成手写数字识别过程复杂、达到较高识别率困难的根本原因。如图 2.1 各种各样的手写体数字。图 2.1 各种各样的手写体数字专业专心专注专业资料参考首选 2.2 图像预处理概述预处理[6] 是字符识别重要的一环, 它把原始的图像转换成识别器所能接受的二进制形式。要识别手写体数字首先要对其字符图像进行预处理。预处理的主要目的是去除字符图像中的噪声、压缩冗余信息, 得到规范化的点阵, 为识别做好准备。这就要求预处理在消除图像中与识别无关的因素时尽量保持原图像的字符特征。手写体数字图像预处理的过程,就一般情况而言,主要经过如图 2.2 所示的几个步骤。不同的识别方法对预处理的项目和要求有所不同。如结构识别方法[7],对字符规范化可以从简,甚至不需要。有的识别方法对细化要求很高,有的则不需要细化。本章中将分别对平滑去噪、二值化、归一化和细化分小节讨论。原始图像平滑去噪二值化归一化细化图 2.2 图像预处理的基本流程 2.3 图像预处理的处理步骤 2.3.1图像的平滑去噪手写体数字由于其随机性大,断笔,连笔、飞白状况时常发生,为了减少灰度图像的一些不该出现的黑白噪声,可以采用图像的平滑去噪技术。进行图像平滑处理的是一种空域滤波器[8],空域滤波器一般可分为线性滤波和非线性滤波两类。线性滤波器的设计常基于对傅立叶变换的分析,如均值滤波器;非