)?D. 一致缩减积分(URI)?E. 增强应变公式?F. 混合 U-P 公式?G. 对连续单元的一般建议?H. 壳单元?I. 梁单元РSeptember 30, 2001?Inventory #001491?TOC-7Р单元技术?A. 传统位移公式Р无附加自由度的完全积分的低阶和高阶单元是传统的基于位移的单元的例子。?SOLID45 (KEYOPT(1)=1) 和 PLANE42 (KEYOPT(2)=1) 是低阶完全积分的传统位移公式的例子。?SOLID95 (KEYOPT(11)=0) 是高阶完全积分传统位移公式的例子。?这实际上是14点积分公式而不是3x3x3 积分方案, 以后会讨论。14点积分公式比完全积分方案更有效。РSeptember 30, 2001?Inventory #001491?TOC-8Р单元技术? ... 传统位移公式Р回顾积分点的一些重要细节:?对任何单元, 自由度解{Du} 是在结点求出?在积分点计算应力和应变。它们由自由度导出。例如可以由位移通过下式确定应变:???[B] 称为应变- 位移矩阵?后处理结果时,积分点应力/应变值外推或拷贝到结点位置?右图所示为 2x2 积分的四结点四边形单元,红色为积分点。Рs, eРuРSeptember 30, 2001?Inventory #001491?TOC-9Р单元技术? ... 传统位移公式Р传统的基于位移单元的积分点遵循 Gauss 积分法且和单元的阶数相同。这称为完全积分。Р换句话说, 完全积分意味着数值积分方法对未发生几何扭曲单元的应变能的所有分量是精确的。РSeptember 30, 2001?Inventory #001491?TOC-10Р单元技术? ... 传统位移公式Р完全积分、低阶传统位移单元易于发生剪切和体积锁定,因此很少使用。?完全积分、高阶传统位移单元也易于发生体积锁定。